
mKPAC:Kernel Packet Processing for Manycore Systems
Ramneek1, Mohan Kumar2, Taesoo Kim2, Sungin Jung1

1Electronics and Telecommunications Research Institute (ETRI), Daejeon, South Korea
2Georgia Institute of Technology, Atlanta, USA

ramneek@etri.re.kr, mohankumar@gatech.edu, taesoo@gatech.edu, sijung@etri.re.kr

ABSTRACT
Network Function Virtualization (NFV) has recently gained popular-
ity due to its ability of offering high scalability and programmability
using commodity servers and general-purpose operating system
(OS). However, current OSes have failed to deliver the data-plane
performance required by the software-based network functions,
mainly due to the inherent overheads associated with network
stack in the kernel. We present mKPAC, aimed at improving data
plane performance of OS kernel in manycore environment. We
analyze the high-impact overheads residing in network stack of
Linux kernel, and show that the data plane performance for NFV
can be accelerated by mitigating major performance penalties and
by leveraging the availability of manycores. With 64 bytes packet
size, mKPAC can successfully accelerate the Linux Kernel packet
forwarding performance up to 40% in packets per second.

CCS CONCEPTS
• Networks → Network protocol design; • Software and its
engineering → Operating systems;

KEYWORDS
Network Function Virtualization, Linux, Manycore Systems

1 INTRODUCTION
Traditional hardware-centric network functions provide highly
optimized packet processing performance. However, they fail to
provide the scalability and flexibility required in virtualized data
centers that host multiple tenants who dynamically implement
their own network topology regardless of the underlying physical
network. Envisioned to overcome these challenges, the use of NFV
has been proposed [3]. Virtualization of networking equipment al-
lows the network operators to implement a variety of sophisticated
network functions by leveraging the programmability, scalability
and ease of use offered by commodity servers running conventional
operating systems. Despite these benefits, NFV fails to satisfy the
performance requirements of network functions.

Existing solutions to achieve high data plane performance in-
clude hardware based acceleration (PacketShader, ClickNP), kernel
bypassing (DPDK, Netmap), and NFV platforms such as ClickOS,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Middleware ’18 Posters and Demos, December 10–14, 2018, Rennes, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6109-5/18/12. . . $15.00
https://doi.org/10.1145/3284014.3284022

Figure 1: Illustration of the Experimental Testbed

NetVM, [2] etc. However, these approaches still suffer from a num-
ber of issues, such as need for specialized hardware, excessive mem-
ory usage, scalability issues, relatively low security, need for reim-
plementation of software functions from scratch in user space, or de-
velopment of new systems, instead of relying on well-implemented
kernel stacks. Other proposals like Megapipe, fastsocket, IX, mTCP
etc. focus on user space applications involving system call and
packet copying overheads, that do not exist in kernel-space appli-
cations considered for the present study. With recent advances in
processor technologies supporting large number of cores, and in
network equipment supporting high data rates, significant speed
up can be supported for network functions that are responsive
to parallelization [1]. Moreover, maturity of implementation and
robustness of existing kernels, and their inherent features such as
iptables, netfilter, ipsec, cgroups, etc. can help to define virtualized
network functions with greater ease and flexibility. Hence, there is
a need to overcome the drawbacks in network stacks of existing
kernels.

In this work, we focus on kernel-level optimizations to enhance
the packet processing performance on manycore systems and over-
come the limitations in existing techniques. We consider data-plane
forwarding applications such as software switching, IP forward-
ing, daisy chaining based forwarding, and other NFVs e.g software-
based firewall, intrusion detection, etc. These applications are imple-
mented in kernel-space and do not incur the system call overheads
associated with user-kernel context switch or packet copying over-
heads. By mitigating the overheads associated with the transmit
path and exploiting the scalability of manycore systems, mKPAC
can achieve up to 40% improvement in packets per second(PPS) for
64 bytes packets as compared to baseline Linux.

2 EXPERIMENTAL SETUP AND ANALYSIS
The analysis and implementation for the current work is based on
Linux Kernel 4.4.1 running on a Intel(R) Xeon(R) CPU E7-8870 v2 @
2.30GHz, with 8 NUMA sockets, each having 15 cores. Intel Ether-
net Controller XL710 with two 40GbE ports is used for data RX and
TX. We use OVS kernel module for data plane forwarding [5]. The
device under test is connected to DPDK-Pktgen, generating traffic
at the rate of 40Gbps, as shown in Figure 1. We used the CPU Flame

15

https://doi.org/10.1145/3284014.3284022

Figure 2: OVS Kernel mode Flamegraph, indicating main
packet processing components for data-plane forwarding.

Graphs to identify the hot or busy-on-CPU code paths by visual-
ization of sampled stack traces as shown in Figure 2. We identify
the packet processing components as: Kernel receive packets (RX),
OVS processing (application handling), Kernel send packets (TX),
and meta data/data buffer allocation and freeing. Profiling with perf
top shows that raw spin locks in Qdisc and TX queue contribute to
14.2% of overhead. Hence, the main overheads can be traced down
to high TX interrupt handling, cleanup and transmit component
overheads, meta-data/data buffer allocation and freeing.

3 DESIGN AND IMPLEMENTATION
In the current work, we aim at improving the packet processing
performance by proposing design solutions to overcome TX path
overheads, as described below:

Adaptive TX Clean-up:With the Linux NAPI mechanism, besides
polling for receiving packets, kernel cleans the TX ring on the NIC
port. Cleanup includes unmapping the DMA region, freeing the
data and meta-data buffer after transmission is complete. When
no packets are available in RX ring, the port is removed from the
polling list and interrupt is enabled. Also, the TX polling loop
executes only for a small fixed budget, defined by the driver. The
frequent interrupts and inefficient cleanup can disrupt the CPU
cycles, resulting in low performance. To address this issue, we
propose the use of adaptive TX cleanup. To avoid the CPU resource
exhaustion because of non-preemptive cleanup, we modify TX
cleanup budget calculation to dynamically optimize the number of
TX elements that can be cleaned up in one polling loop.

TX spin locks and TX queue selection:We focus on two main over-
heads: TX spin locks and TX queue selection. In Linux, there are
two spin locks: one for Qdisc and the other for TX queue. Even
when there is no contention, such that each core has its exclusive
TX queue and a dedicated Qdisc for each TX queue, the atomic in-
structions for lock and unlock create a high overhead (14%). Hence,
we can avoid both the locks in the TX path, resulting in an increased
performance without contention. In Linux kernel, TX queue selec-
tion logic is implemented by the driver code and is based on hashing
or transmit path steering (XPS) in case of multi-queue systems [4].
However, it does not ensure that a unique queue is assigned to each
CPU. Hence, we modify the queue selection function such that a
unique queue dedicated to each core can be assigned for TX.

4 EVALUATION AND FUTURE DIRECTIONS
Packet processing performance gains achieved by mKPAC are
shown in Figure 3. As compared to the baseline Linux kernel, we
could achieve up to 40% improvement in PPS for 64 Bytes packet

Figure 3: Throughput vs. number of cores for baseline ker-
nel and mKPAC for (a) 64 bytes and (b) 128 bytes packets.

size. The per-core decrease in latency using mKPAC is around 23%
and 22%, for 64 bytes and 128 bytes packets, respectively. The cur-
rent implementation spans across the NAPI module, driver module,
and the dev_queue_xmit path of Linux kernel. Our preliminary
results show that by focusing on the design issues in the kernel, a
considerable performance improvement can be achieved on many-
core systems, without any kind of kernel-bypassing or specialized
hardware support. The packet processing performance can be fur-
ther improved by addressing other overheads and scalability issues
in manycore systems. For instance, overheads related to meta data
and data buffer allocation and de-allocation can be addressed by
pre-allocation of buffers by the NIC driver during initialization.
This can help to reduce the allocation cycles and prevent mapping
and un-mapping of data buffers for every packet transmission, and
will be implemented in the future work.

Tuning various system parameters, such as irq affinity, buffer
sizes, etc., can help to achieve some performance gain; however,
these are not significant for high pps workloads. Hence, mKPAC
rather focuses on design issues related to the network stack in
OSes. Future work will include (i) design solutions for overcoming
additional overheads in the network stack and scalability issues in
manycore systems; (ii) evaluation with other use cases (e.g. contrail
vRouters, eBPF based InKev,etc.), more complex network functions
(e.g.intrusion detection, daisy-chaining based forwarding, load bal-
ancing, etc), and smart NICs and drivers capable of providing low
latency and other advanced features.

ACKNOWLEDGMENTS
The work is supported by the Institute for Information and Commu-
nications Technology Promotion under Grant No.: 2014-3-00035.

REFERENCES
[1] Silas Boyd-Wickizer, Austin T. Clements, YandongMao, Aleksey Pesterev, M. Frans

Kaashoek, Robert Morris, and Nickolai Zeldovich. 2010. An Analysis of Linux
Scalability toMany Cores. In Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation (OSDI’10). 1–16.

[2] Sebastian Gallenmüller, Paul Emmerich, Florian Wohlfart, Daniel Raumer, and
Georg Carle. 2015. Comparison of Frameworks for High-Performance Packet IO. In
Proceedings of the Eleventh ACM/IEEE Symposium on Architectures for Networking
and Communications Systems (ANCS ’15). IEEE Computer Society, Washington,
DC, USA, 29–38.

[3] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee. 2015. Network function virtualization:
Challenges and opportunities for innovations. IEEE Communications Magazine 53,
2 (Feb 2015), 90–97.

[4] Tom Herbert and Willem de Bruijn. 2018. Scaling in the Linux Networking Stack.
https://www.kernel.org/doc/Documentation/networking/scaling.txt

[5] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J. Jackson, Andy Zhou, Jarno Raja-
halme, Jesse Gross, Alex Wang, Jonathan Stringer, Pravin Shelar, Keith Amidon,
and Martín Casado. 2015. The Design and Implementation of Open vSwitch.
In Proceedings of the 12th USENIX Conference on Networked Systems Design and
Implementation (NSDI’15). 117–130.

2

16

https://www.kernel.org/doc/Documentation/networking/scaling.txt

	Abstract
	1 Introduction
	2 Experimental Setup and Analysis
	3 Design and implementation
	4 Evaluation and Future Directions
	Acknowledgments
	References

